IS ARTIFICIAL NEURAL NETWORK INTELLIGENT?
نویسندگان
چکیده
منابع مشابه
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Distillation Column Identification Using Artificial Neural Network
 Abstract: In this paper, Artificial Neural Network (ANN) was used for modeling the nonlinear structure of a debutanizer column in a refinery gas process plant. The actual input-output data of the system were measured in order to be used for system identification based on root mean square error (RMSE) minimization approach. It was shown that the designed recurrent neural network is able to pr...
متن کاملSupplychain Inventory Policy Using Intelligent Agents and Artificial Neural Network
In current global competitive market, manufacturers must set up an efficient supply chain and network to cut cost. Each company aims to supply the right quantity of products to customer in right place and at right time with right cost. Each supplier must respond to the short life-cycle and quick response need for the terminal products. To satisfy the varying customer demand is one of the most i...
متن کاملIntelligent Optical Sensors Using Artificial Neural Network Approach
This work present and demonstrated an applications of artificial neural network approach in optical sensing. The conventional matrix method used in simultaneous measurement of strain and temperature with optical Bragg gratings is compared with artificial neural network approach. The alternative method is proposed for reduced the error.
متن کاملIntelligent Handwritten Digit Recognition using Artificial Neural Network
The aim of this paper is to implement a Multilayer Perceptron (MLP) Neural Network to recognize and predict handwritten digits from 0 to 9. A dataset of 5000 samples were obtained from MNIST. The dataset was trained using gradient descent back-propagation algorithm and further tested using the feed-forward algorithm. The system performance is observed by varying the number of hidden units and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computing
سال: 2011
ISSN: 2312-5381,1727-6209
DOI: 10.47839/ijc.10.1.738